Large Sample Properties of Separable Nonlinear Least Squares Estimators
نویسندگان
چکیده
منابع مشابه
Mixing Least - Squares Estimators
We propose a procedure to handle the problem of Gaussian regression when the variance is unknown. We mix least-squares estimators from various models according to a procedure inspired by that of Leung and Barron [17]. We show that in some cases the resulting estimator is a simple shrinkage estimator. We then apply this procedure in various statistical settings such as linear regression or adapt...
متن کاملAn Efficient Algorithm for the Separable Nonlinear Least Squares Problem
The nonlinear least squares problem miny,z‖A(y)z + b(y)‖, where A(y) is a full-rank (N + `)× N matrix, y ∈ Rn, z ∈ RN and b(y) ∈ RN+` with ` ≥ n, can be solved by first solving a reduced problem miny‖ f (y)‖ to find the optimal value y∗ of y, and then solving the resulting linear least squares problem minz‖A(y∗)z + b(y∗)‖ to find the optimal value z∗ of z. We have previously justified the use o...
متن کاملAsymptotic Properties of Least Squares Estimators of Cointegrating Vectors
Time series variables that stochastically trend together form a cointegrated system. In such systems, certain linear combinations of contemporaneous values of these variables have a lower order of integration than does each variable considered individually. These linear combinations are given by cointegrating vectors. OLS and NLS estimators of the parameters of a cointegrating vector are shown ...
متن کاملWeighted least squares estimators in possibly misspecified nonlinear regression
The behavior of estimators for misspecified parametric models has been well studied. We consider estimators for misspecified nonlinear regression models, with error and covariates possibly dependent. These models are described by specifying a parametric model for the conditional expectation of the response given the covariates. This is a parametric family of conditional constraints, which makes...
متن کاملAsymptotic oracle properties of SCAD-penalized least squares estimators
We study the asymptotic properties of the SCAD-penalized least squares estimator in sparse, high-dimensional, linear regression models when the number of covariates may increase with the sample size. We are particularly interested in the use of this estimator for simultaneous variable selection and estimation. We show that under appropriate conditions, the SCAD-penalized least squares estimator...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Signal Processing
سال: 2004
ISSN: 1053-587X
DOI: 10.1109/tsp.2004.827227